Swarm/HexGrid3D/HexGrid3D.gd

463 lines
15 KiB
GDScript

extends Node3D
class_name HexGrid
@onready var placement_visualizer = $PlacementVisualizer
const DIR_N: Vector3 = Vector3(0, 1, -1)
const DIR_NE: Vector3 = Vector3(1, 0, -1)
const DIR_SE: Vector3 = Vector3(1, -1, 0)
const DIR_S: Vector3 = Vector3(0, -1, 1)
const DIR_SW: Vector3 = Vector3(-1, 0, 1)
const DIR_NW: Vector3 = Vector3(-1, 1, 0)
const DIR_ALL: Array[Vector3] = [DIR_N, DIR_NE, DIR_SE, DIR_S, DIR_SW, DIR_NW]
#const size = Vector2(1, sqrt(3.0)/2.0)
# We can hover all of our tiles (will show on-hover shader)
# If we click on a placed tile, we do the following
# Check if we would split the hive -> deny selection
# Get possible movement tiles (via MovementBehaviour)
# If 0 -> Deny
# Filter remaining movement spots to not include hive-splitting moves(?)
const size: float = 0.5
var used_cells: Dictionary = {}
@export var layer_height: float = 0.4
# have all used_cells be saved as Vector4i (q, r, s, y)
class AxialCoordinates:
var q: float
var r: float
func _init(_q: float, _r: float):
q = _q
r = _r
func flat_hex_corner(center: Vector2, size: float, corner_num: int) -> Vector2:
var angle_deg: int = 60 * corner_num
var angle_rad: float = deg_to_rad(angle_deg)
return Vector2(center.x + size * cos(angle_rad), center.y + size * sin(angle_rad))
func flat_hex_to_world_position(coords: AxialCoordinates) -> Vector2:
var x = size * (3.0/2.0 * coords.q)
var y = size * (sqrt(3.0)/2.0 * coords.q + sqrt(3.0) * coords.r)
return Vector2(x, y)
func cube_to_world_pos(coords: Vector4i) -> Vector2:
return flat_hex_to_world_position(cube_to_axial(coords))
#func world_to_hex_tile(world_pos: Vector3) -> Vector2:
# var q = (2.0/3.0 * world_pos.x)
# var r = (-1.0/3.0 * world_pos.x + sqrt(3.0)/3.0 * world_pos.z)
#
# return cube_round()
#
# return
const INSECT_TILE = preload("res://InsectTiles/InsectTile.tscn")
func world_to_hex_tile(coords: Vector2) -> AxialCoordinates:
var q = (2.0/3.0 * coords.x) / size
var r = (-1.0/3.0 * coords.x + sqrt(3.0)/3.0 * coords.y) / size
return axial_round(AxialCoordinates.new(q, r))
func cube_to_axial(coords: Vector4i) -> AxialCoordinates:
var q = coords.x
var r = coords.y
return AxialCoordinates.new(q, r)
func axial_round(coords: AxialCoordinates) -> AxialCoordinates:
return cube_to_axial(cube_round(axial_to_cube(coords)))
func axial_to_cube(coords: AxialCoordinates) -> Vector4i:
var q = coords.q
var r = coords.r
var s = -q-r
return Vector4i(q, r, s, 0)
func cube_round(coords: Vector4i) -> Vector4i:
var q: float = round(coords.x)
var r: float = round(coords.y)
var s: float = round(coords.z)
var q_diff: float = abs(q - coords.x)
var r_diff: float = abs(r - coords.y)
var s_diff: float = abs(s - coords.z)
if q_diff > r_diff and q_diff > s_diff:
q = -r-s
elif r_diff > s_diff:
r = -q-s
else:
s = -q-r
return Vector4i(q, r, s, 0)
@export var dragging_intersect_plane_normal: Vector3 = Vector3.UP
@export var dragging_intersect_plane_distance: float = 0.0
func get_3d_pos(position2D: Vector2):
return Plane(dragging_intersect_plane_normal, dragging_intersect_plane_distance).intersects_ray(get_viewport().get_camera_3d().project_ray_origin(position2D), get_viewport().get_camera_3d().project_ray_normal(position2D))
var placements: Dictionary = {}
func is_cell_empty(coords: Vector4i) -> bool:
return !used_cells.has(coords)
func is_cell_not_empty(coords: Vector4i) -> bool:
return !is_cell_empty(coords)
func get_empty_neighbours(coords: Vector4i) -> Array[Vector4i]:
return get_neighbours(coords).filter(is_cell_empty)
func get_neighbours(coords: Vector4i, ground_layer: bool = false) -> Array[Vector4i]:
var layer: int = coords.w
if ground_layer:
layer = 0
return [
Vector4i(coords.x + 1, coords.y, coords.z - 1, layer),
Vector4i(coords.x + 1, coords.y - 1, coords.z, layer),
Vector4i(coords.x, coords.y - 1, coords.z + 1, layer),
Vector4i(coords.x - 1, coords.y, coords.z + 1, layer),
Vector4i(coords.x - 1, coords.y + 1, coords.z, layer),
Vector4i(coords.x, coords.y + 1, coords.z - 1, layer)
]
var current_tile: Node3D
const HEX_OUTLINE = preload("res://hex_outline.tscn")
func get_placeable_positions(button: InsectButton) -> Array[Vector4i]:
if used_cells.size() == 0:
return [Vector4i.ZERO]
elif used_cells.size() == 1:
var single_cell = used_cells.keys().front()
var neighbours = get_neighbours(single_cell)
var positions: Array[Vector4i] = []
for neighbour in neighbours:
#var hex_pos = cube_to_world_pos(neighbour)
positions.push_back(neighbour)
return positions
var possible_placements: Dictionary = {}
var positions: Array[Vector4i] = []
for hex in used_cells.keys():
for neighbour in get_empty_neighbours(hex):
if not used_cells.has(neighbour):
possible_placements[neighbour] = true
for p in possible_placements:
var eligible: bool = true
for neighbour in get_neighbours(p):
if not used_cells.has(neighbour):
continue
if used_cells[neighbour].is_black != button.is_black:
eligible = false
break
if eligible:
positions.push_back(p)
return positions
func get_left_neighbour(pos: Vector4i) -> Vector4i:
return Vector4i(-pos.z, -pos.x, -pos.y, 0)
func get_right_neighbour(pos: Vector4i) -> Vector4i:
return Vector4i(-pos.y, -pos.z, -pos.x, 0)
var debug_labels = []
func debug_label(pos, text) -> void:
var label = Label3D.new()
label.billboard = BaseMaterial3D.BILLBOARD_ENABLED
label.text = text
var p = cube_to_world_pos(pos)
label.position = Vector3(p.x, 0.2, p.y)
add_child(label)
debug_labels.push_back(label)
func clear_debug_labels() -> void:
for label in debug_labels:
label.queue_free()
debug_labels.clear()
func can_reach(start: Vector4i, target: Vector4i, exclude: Array[Vector4i] = []) -> bool:
if start.w != target.w:
return true
# if we have 5 potential spaces it can never be blocked
var offset: Vector4i = Vector4i.ZERO
offset.x = target.x - start.x
offset.y = target.y - start.y
offset.z = target.z - start.z
var left = get_left_neighbour(offset)
var right = get_right_neighbour(offset)
var left_coord = Vector4i(left.x + start.x, left.y + start.y, left.z + start.z, start.w)
var right_coord = Vector4i(right.x + start.x, right.y + start.y, right.z + start.z, start.w)
if left_coord in exclude or right_coord in exclude:
print("excluded?")
return true
return is_cell_empty(left_coord) or is_cell_empty(right_coord)
func _on_insect_selected(button: InsectButton, is_black: bool) -> void:
var positions = get_placeable_positions(button)
for p in positions:
var outline = HEX_OUTLINE.instantiate()
var hex_pos = cube_to_world_pos(p)
outline.position = Vector3(hex_pos.x, 0.0, hex_pos.y)
outline.visible = true
outline.insect_resource = button.insect_resource
outline.is_black = is_black
outline.coordinates = p
outline.map_reference = self
placement_visualizer.add_child(outline)
#placements[p] = outline
# create a hexagon with insect resource data
#var tile = INSECT_TILE.instantiate()
#tile.resource = insect_resource
#tile.is_black = is_black
#current_tile = tile
#add_child(tile)
#var insect_resource: TileResource = button.insect_resource
#
## spawn possible placement locations :)
#if used_cells.size() == 0: # we have no cells placed, display a placement outline at 0, 0
#var outline = HEX_OUTLINE.instantiate()
#var cubepos = Vector4i.new(0, 0, 0)
#var hex_pos = cube_to_world_pos(cubepos)
#outline.position = Vector3(hex_pos.x, 0.0, hex_pos.y)
#outline.visible = true
#outline.insect_resource = insect_resource
#outline.is_black = is_black
#outline.coordinates = cubepos
#outline.map_reference = self
#placement_visualizer.add_child(outline)
#placements[hex_pos] = outline
#elif used_cells.size() == 1: # we have ONE cell placed, this is a special case in which
## the opposing player is allowed to place a tile that touches the enemy color
## We display outline placement around all spaces of this single cell
#var single_cell = used_cells.keys().front()
#var neighbours = get_neighbours(Vector4i.new(single_cell.x, single_cell.y, single_cell.z))
#for neighbour in neighbours:
#var outline = HEX_OUTLINE.instantiate()
#var hex_pos = cube_to_world_pos(neighbour)
#outline.position = Vector3(hex_pos.x, 0.0, hex_pos.y)
#outline.visible = true
#outline.insect_resource = insect_resource
#outline.is_black = is_black
#outline.coordinates = neighbour
#outline.map_reference = self
#placement_visualizer.add_child(outline)
#placements[hex_pos] = outline
#else:
## iterate over all used_cells, get all empty cells surrounding those cells
## iterate over all those empty cells, check if they only neighbour the same color
#var possible_placements: Dictionary = {}
#
#for hex in used_cells.keys():
##var eligible: bool = true
#for neighbour in get_empty_neighbours(Vector4i.new(hex.x, hex.y, hex.z)):
#if not used_cells.has(Vector4(neighbour.q, neighbour.r, neighbour.s, 0)):
#possible_placements[Vector4i(neighbour.q, neighbour.r, neighbour.s, 0)] = true
#
#for p in possible_placements:
#var eligible: bool = true
#
#for neighbour in get_neighbours(Vector4i.new(p.x, p.y, p.z)):
#if not used_cells.has(Vector4i(neighbour.q, neighbour.r, neighbour.s, 0)):
#continue
#
#if used_cells[Vector4i(neighbour.q, neighbour.r, neighbour.s, 0)].is_black != is_black:
#eligible = false
#break
#
#if eligible:
#var outline = HEX_OUTLINE.instantiate()
#var hex_pos = cube_to_world_pos(Vector4i.new(p.x, p.y, p.z))
#outline.position = Vector3(hex_pos.x, 0.0, hex_pos.y)
#outline.visible = true
#outline.insect_resource = insect_resource
#outline.is_black = is_black
#outline.coordinates = Vector4i.new(p.x, p.y, p.z)
#outline.map_reference = self
#placement_visualizer.add_child(outline)
#placements[p] = outline
func _on_insect_placement_cancelled() -> void:
if current_tile:
current_tile.queue_free()
current_tile = null
for child in placement_visualizer.get_children():
child.queue_free()
func _on_insect_placed(resource: TileResource, is_black: bool, pos: Vector4i) -> void:
var tile_copy = INSECT_TILE.instantiate()
var hex_pos = cube_to_world_pos(pos)
tile_copy.position = Vector3(hex_pos.x, 20.0, hex_pos.y)
tile_copy.resource = resource
tile_copy.is_black = is_black
tile_copy.coordinates = pos
tile_copy.map_reference = self
var target_pos = Vector3(hex_pos.x, 0.0, hex_pos.y)
used_cells[pos] = tile_copy
add_child(tile_copy)
var tween = get_tree().create_tween()
tween.tween_property(tile_copy, "position", target_pos, 1.0).set_ease(Tween.EASE_OUT).set_trans(Tween.TRANS_EXPO)
func can_move(tile: InsectTile) -> bool:
return can_hive_exist_without_tile(tile)
func _on_insect_tile_selected(tile: InsectTile) -> void:
if not can_hive_exist_without_tile(tile):
print("Would break hive")
return
if tile.resource.movement_behaviour == null:
print("no movement behaviour")
return
var spaces = tile.resource.movement_behaviour.get_available_spaces(tile.coordinates, self)
if spaces.is_empty():
print("empty?")
#GameEvents.insect_tile_selection_request_failed.emit(tile)
return
for space in spaces:
var neighbours = get_neighbours(space)
var non_empty_neighbours = neighbours.filter(is_cell_not_empty)
if non_empty_neighbours.size() == 1:
# NOTE: This is correct! But seemed wrong when testing the beetle movement
# If there are only two tiles (beetle + some other) the beetle can't climb ontop of the other
# tile. This fixes itself automatically when there are more than two tiles present
# And since you can't move unless you place the bee, there will always be at least 3 tiles
# before you can move your beetle
var occupied_neighbour = non_empty_neighbours.front()
if occupied_neighbour == tile.coordinates:
continue
var layer: int = 0
var temp_tile: InsectTile = null
if is_cell_not_empty(space):
temp_tile = used_cells.get(space)
layer = 1
while tile.hat != null:
layer += 1
tile = tile.hat
space.w = layer
var outline = HEX_OUTLINE.instantiate()
var hex_pos = cube_to_world_pos(space) # flat_hex_to_world_position(AxialCoordinates.new(space.x, space.y))
outline.position = Vector3(hex_pos.x, layer * layer_height, hex_pos.y)
outline.coordinates = space
outline.visible = true
outline.insect_tile = tile
outline.is_moving = true
outline.insect_resource = tile.resource
outline.is_black = tile.is_black
placement_visualizer.add_child(outline)
placements[space] = outline
func get_tile(pos: Vector4i) -> InsectTile:
return used_cells.get(pos)
func _on_insect_tile_moved(tile: InsectTile, target: Vector4i) -> void:
used_cells.erase(tile.coordinates)
var new_hex_pos = cube_to_world_pos(target)
var sky_new_hex_pos = Vector3(new_hex_pos.x, 20.0, new_hex_pos.y)
var ground_new_hex_pos = Vector3(new_hex_pos.x, target.w * layer_height, new_hex_pos.y)
#
var current_hex_pos = tile.position
var sky_current_hex_pos = tile.position + Vector3(0.0, 20.0, 0.0)
#
var tween = get_tree().create_tween()
tween.tween_property(tile, "position", sky_current_hex_pos, 0.5).set_ease(Tween.EASE_IN).set_trans(Tween.TRANS_EXPO)
tween.tween_property(tile, "position", sky_new_hex_pos, 0.0)
tween.tween_property(tile, "position", ground_new_hex_pos, 1.0).set_ease(Tween.EASE_OUT).set_trans(Tween.TRANS_EXPO)
tile.coordinates = target
used_cells[tile.coordinates] = tile
func get_same_neighbours(cell1: Vector4i, cell2: Vector4i) -> Array[Vector4i]:
var neighbours1 = get_neighbours(cell1).filter(is_cell_not_empty)
var neighbours2 = get_neighbours(cell2).filter(is_cell_not_empty)
var shared_neighbours: Array[Vector4i] = []
for n1 in neighbours1:
for n2 in neighbours2:
if n1 == n2:
if n1 not in shared_neighbours:
shared_neighbours.push_back(n1)
return shared_neighbours
func is_position_on_hive(pos: Vector4i) -> bool:
return get_empty_neighbours(pos).size() < 6
func can_hive_exist_without_tile(tile: InsectTile) -> bool:
# TODO: BFS-Search from random cell to see if all other cells could still be reached when this
# tile would be empty space
if get_empty_neighbours(tile.coordinates).size() == 5: # we only have one real neighbour, so can't break anything
return true
# DO BFS
var tiles_reached: Array = []
var tiles_available: Array = used_cells.keys().filter(func(coords): return coords != tile.coordinates).filter(func(coords): coords.w != tile.coordinates.w)
if tiles_available.size() <= 1:
# If we only have 1 or 2 total tiles, we can always move
# 1 tile should never happen
# two... could theoretically but yeah
return true
# tiles_available has all remaining tiles, we just need to visit every tile from a (random) starting tile
# and compare the size with these of all tiles - 1 (our to be moved one)
var start: Vector4i = tiles_available.front()
tiles_reached.push_back(start)
var queue: Array[Vector4i] = [start]
while queue.size() > 0:
var m = queue.pop_front()
for neighbour in get_neighbours(m):
if neighbour not in tiles_reached and neighbour != tile.coordinates:
if used_cells.has(neighbour):
tiles_reached.push_back(neighbour)
queue.push_back(neighbour)
return tiles_reached.size() == used_cells.size() - 1
func _ready() -> void:
GameEvents.insect_selected.connect(_on_insect_selected)
GameEvents.insect_placement_cancelled.connect(_on_insect_placement_cancelled)
GameEvents.insect_placed.connect(_on_insect_placed)
GameEvents.insect_tile_selected.connect(_on_insect_tile_selected)
GameEvents.insect_tile_moved.connect(_on_insect_tile_moved)